Arquivo de tag gsepi

Reator em derivação

Fonte: FRONTIN, Sergio. Equipamentos de alta tensão: prospecção e hierarquização de inovações tecnológicas. Brasília: Teixeira, 2013. Pg.282

O que são ?

No sistema elétrico de potência, para que a transmissão de grandes blocos de energia seja eficiente é necessário o controle dos níveis de tensão no sistema, ocorrido de variações de energia e consumo da energia elétrica. Durante alguns períodos do ciclo de carga diário do sistema elétrico é caracterizado por ter baixa demanda das cargas o que ocasiona em aumento da potência reativa injetada, onde os níveis de tensão são elevados. A estabilização desses valores de tensão é alcançada através do controle da potência reativa, que são fundamentais para a segurança das instalações e equipamentos.

O reator em derivação é um dos principais dispositivos indutivos utilizados para o controle de tensão. Tem a função de captar o excesso de potência reativa capacitiva natural da linha das linhas de transmissão, reduzindo e mantendo os valores de tensão em nível adequado. Além disso, tem a função de reduzir sobretensões nos surtos de manobra e variar de forma artificial o comprimento de linhas.

Existem dois tipos de reatores de derivação fixa e variável. Os reatores em derivação fixo são utilizados para condições mais definidas do sistema e são mais econômicos. Por outro lado, os reatores em derivação variável lidam com fluxos de energia flutuantes sendo mais flexíveis e eficientes, onde promovem o ajuste de potência nominal do reator às necessidades do sistema.

A figura abaixo mostra um diagrama simplificado com a presença de um reator em derivação de linha conectado a linha de transmissão a barra de subestação e ao terciário de um autotransformador.

Fonte: FRONTIN, Sergio. Equipamentos de alta tensão: prospecção e hierarquização de inovações tecnológicas. Brasília: Teixeira, 2013. Pg.281

Classificação

Os reatores em derivação são classificados de acordo com a sua localização. São eles o reator de linha, reator de barra e reator terciário.

Reator de linha: São instalados diretamente em pontos de extremidade das linhas de transmissão, especialmente em linhas longas. São conectados entre fase e terra em cada fase da linha, geralmente trifásicos, mas em tensões muito altas pode sem monofásicos. Tem como função compensar a potencia reativa capacitiva quando as linhas estão com poucas cargas ou a vazio, controlar o perfil de tensão ao longo da linha e reduzir o efeito Ferranti que ocasiona sobretensão no final da linha em vazio.

Reator de barra: São empregados diretamente nos barramentos de subestações. Esse tipo de reator não está associado a uma linha particular, mas sim à barra como um todo.

Reator terciário: São conectados ao enrolamento terciário de um autotransformador.

Quanto a forma de conexão existe dois tipos de reatores, pode ser classificado como manobrável e não manobrável. O manobrável é ligado temporariamente e pode ser ajustado através de disjuntores. O não manobrável possui ligação fixa e permanente ao sistema elétrico.

Referências

FRONTIN, Sergio de Oliveira (Org.). Equipamentos de alta tensão: prospecção e hierarquização de inovações tecnológicas. Brasília: Teixeira, 2013. 934 p

Siemens-Energy. Reatores de derivação e reatores em série. Disponível em:https://www.siemens-energy.com/global/en/home/products-services/product/reactors.html

OpenDSS e o estudo de sistemas elétricos de potência

O OpenDSS é uma ferramenta virtual muito versátil e de grande utilidade para o estudo de sistemas elétricos de potência, pois nele é possível analisar e simular diferentes situações que acomete uma rede, assim como obter as suas diferentes respostas. Nesse texto serão apresentados maneiras que ele pode ser utilizado para fins de pesquisa de uma determinada rede ou apenas para a análise pontual de um determinado evento.

O OpenDSS foi originalmente criado em 1997 por Roger Dugan e Thomas McDemontt como Distribution System Simulator para solucionar os desafios da área de distribuição de energia na época, sendo uma das pioneiras nesse quesito. Em 2004 a empresa Electric Power Research Institute (EPRI) comprou os direitos do programa e o distribuiu em código aberto com intuito de que mais pessoas pudessem colaborar com o seu desenvolvimento, tendo seu nome alterado para o que ele é atualmente: OpenDSS

Sua implementação era inicialmente feita pelas linguagens Delphi e C++, no entanto, com o envolvimento da comunidade e seu código open-source permitiram que o OpenDSS fosse acessível e programável a partir de outros softwares através da Interface Component Object Model (COM). Com essa interface você pode escrever seu código no RStudio ou Matlab e conseguir projetar o circuito e suas respostas no OpenDSS, aumentando a versatilidade do programa.

Além desses exemplos, uma maneira que se tornou muito popular foi o controle utilizando a linguagem Python, sendo feita possível com pacotes a serem instalados tanto no OpenDSS quanto no seu ambiente de desenvolvimento integrado (IDE) em Python, que são a interface py-dss-interface e e a extensão OpenDSSDirect.py.


Circuito exemplo IEEE 13 barras.

Acima está apresentada uma rede de exemplo que vem junto do programa, o IEEE 13 Barras, onde nele é possível determinar alguns elementos. A linha verde simboliza o gerador, as linhas cinzas são transformadores e os círculos vermelhos são pontos de conexão da rede com outras linhas. Os círculos azuis são as cargas que serão entregue a potência dessa rede.

Das funcionalidades, vai do básico, como verificar níveis de tensão e corrente em certos pontos, até o mais avançado, como estudo de curtos circuitos e de fluxo de potência. Dos curtos, utilizando o comando fault study, peca somente nos curtos bifásicos-terra, porém ele analisa as faltas simétricas (trifásicas), monofásicas e os curtos fase-fase (bifásico). Do fluxo de potência, é possível analisar como a rede se comportaria com a instalação de novos elementos, como geradores eólicos e fotovoltaicos, sendo possível estudar e testar a viabilidade da alocação dessas diferentes fontes em uma rede específica. 

No quesito de modelagem, o usuário pode criar novas redes ou criar uma rede de distribuição real de uma cidade, bairro ou região que desejar, apenas programando na linguagem desejada e implementando com o programa. 

Em conclusão, o OpenDSS é uma ferramenta muito versátil que permite estudar os diferentes aspectos que uma rede elétrica de distribuição de energia pode apresentar, sendo muito importante desde sua criação para os pesquisadores dessa área. Existem muitas mais funcionalidades que o programa possui que não seria possível citar todas aqui, ficando a critério do leitor para instalar e experimentar, desenvolvendo também a comunidade de estudiosos dos sistemas de distribuição elétrica.

REFERÊNCIAS 

  • RADATZ, Paulo Ricardo. Modelos avançados de análise de redes
  • elétricas inteligentes utilizando o software OpenDSS. Universidade de São Paulo–USP, Escola Politécnica.

Limitadores de Corrente

O que são?

Limitadores de corrente ou proteção de sobrecorrente são dispositivos utilizados em sistemas de geradores para evitar sobrecargas que possam causar superaquecimento em outros componentes. Esses instrumentos estão presentes em diversos aparelhos e sistemas como os de som, em aviões, e outros dispositivos que necessitem se manter em uma faixa de corrente específica. Eles tem o benefício de aumentar a vida útil do sistema, prevenindo danos e fornecendo uma manutenção mais segura. Quando a corrente ultrapassa um valor predeterminado, a energia excedente é barrada.

Funcionamento

O funcionamento desses dispositivos se dá em série com os circuitos monitorando constantemente a corrente de saída. Um exemplo de circuito limitador é o vibrador presente em aeronaves: Quando a corrente excedente é detectada, a bobina de corrente magnetiza o núcleo de ferro, abrindo os pontos de contato, consequentemente, aumentando a resistência ao circuito e reduzindo a corrente. Ao atingir um valor dentro dos limites de corrente, os pontos de contato se fecham e o circuito retorna ao seu funcionamento rotineiro.  

Características

Já que há diversos tipos de limitadores de corrente há algumas características que devem ser levadas em consideração na escolha:

  • Impor baixa impedância em regime permanente
  • Ter o menor tempo de transição entre o estado normal e estado de falta
  • Não necessitar de troca após momentos de curto

Atualmente esse tipo de componente está presente nas usinas de geração de energia por meio dos Reatores de Ar que já possui dimensões maiores e que deve-se levar em consideração outras variáveis como efeito Joule. Outro componente são os dispositivos pirotécnicos que utilizam determinadas substâncias químicas para provocar reações e corta o fluxo de corrente por completo, a direcionando a outra rota.

Reatores de Núcleo de ar em Mogi Cruzes

Referências:

Comutador de Derivação em Transformadores

O que é o comutador de derivação

Em sistemas elétricos de potência, é comum que haja variações de tensões nas linhas de transmissão, devido a grande quantidade de cargas que são ligadas e desligadas constantemente. Porém, manter a tensão dentro de faixas operacionais é fundamental para garantir a qualidade e eficiência do fornecimento. Daí se dá a importância do comutador de derivação (tap-changer), que é um dispositivo utilizado em transformadores para ajustar a relação de transformação e regular a tensão de saída, permitindo que a tensão permaneça em valores desejáveis, garantindo a estabilidade da rede, compensando variações de carga e flutuações na geração.

Princípios de operação

O tap-changer ajusta a relação de transformação ao alterar os pontos de conexão do enrolamento do transformador. A ideia é simples: se modificamos a quantidade de espiras ativas em um dos enrolamentos, mudamos a tensão resultante. Essa alteração ocorre em pequenos incrementos (geralmente de 1,25% a 2,5% por passo), permitindo uma regulação fina da tensão.

Imagem 1: Diagrama esquemático de um tap-changer

Tipos de comutadores

Existem dois tipos principais de comutadores:

Comutador de derivação em carga (OLTC): Permitem alterar a derivação com o transformador energizado e operando. Isso é possível graças a mecanismos auxiliares que evitam curtos-circuitos momentâneos durante a transição. Nos mais modernos, a comutação é automática e operada por motores que respondem a relés configurados para manter a tensão no nível determinado, reagindo em tempo real a variações de carga. Eles são comuns em transformadores de subtransmissão e distribuição primária.

Comutadores de derivação desenergizados (DETC): Mais simples e baratos, exigem o desligamento do transformador para alteração do tap. São utilizados onde as variações de tensão são menores ou onde a operação contínua não é essencial.

Resumo:

TipoVantagens Desvantagens
OLTCAjuste em tempo realComplexidade e custo elevado
DETCSimplicidade e baixo custoNecessita desligamento

Conclusão


Permitindo a regulação da tensão de saída, o comutador de derivação é peça chave na estabilidade das redes atuais. A escolha entre OLTC e DETC depende de critérios econômicos e operacionais, mas seu papel tende a crescer com a evolução da rede elétrica brasileira, especialmente diante do avanço da automação e da geração distribuída.

Referências

STEVENSON, William D. Elementos de Análise de Sistemas de Potência. 2.ed. São Paulo: McGraw-Hill, 1986. pag. 76-80.

https://www.megger.com/en-ca/applications/transformers/tap-changers

https://utbtransformers.com/understanding-transformer-tap-changers-types-functions-and-applications/

A importância do fator de potência para a distribuição de energia

A regularização do fator de potência tem se mostrado um dos grandes desafios da modernidade pelas concessionárias de energia quando se trata da transmissão de energia elétrica para seus consumidores. O fator de potência é uma medida de suma importância para ter certeza de que todo o sistema está operando com a qualidade devida e não ocorra complicações com os equipamentos da população ou com os geradores.
Para isso, existe a implementação da correção do fator de potência para que o mesmo se mantenha dentro dos parâmetros ótimos de qualidade. No entanto, para entender essa medida e como o fator de potência afeta o sistema elétrico de potência, precisamos entender o que é o fator de potência.

O que é?

Quando pensamos nos sistemas elétricos de potência e suas redes de distribuição, é comum depararmos com equipamentos que apresentam seu consumo em Watts (W) ou Volt-Ampere (VA), ambas sendo medidas de potências. A razão desses diferentes tipos de potência está relacionado com o fato de que as cargas que receberão a energia elétrica são geralmente resistivas e indutivas, ou seja, motores e enrolamentos de fios, como geladeiras, ares-condicionados e a maioria dos eletrodomésticos e maquinários industriais.

Essa característica das cargas residenciais e industriais, quando sob influência de uma tensão de forma senoidal com frequência de 60 Hz, como é o padrão nacional, são tratadas na forma de uma impedância que dissipa potência complexa (S). Tanto a impedância quanto essa potência S são expressas por números complexos na forma a+jb.

Temos então que a potência que é consumida pelas unidades populares possuem uma parte em número real e uma parte em número “imaginário”, parte imaginária essa que está relacionada na dissipação em forma de campo magnético e nas perdas de energia. Essa potência complexa é comumente apresentada com o triângulo de potências.

Fonte: Nilsson e Riedel

Onde a potência média P é medida em watts (W) e é a potência de consumo direto, a potência reativa Q medida em volta-ampére reativo (VAR) é a potência relacionada com a parte imaginária do número complexo e está diretamente relacionado com as cargas indutivas, e por último a potência aparente é o módulo dessa potência S e é medido em volt-ampére (VA).

O fator de potência nada mais é que o cosseno desse ângulo theta (θ), onde fazendo uma análise trigonométrica podemos perceber que a potência média é o a potência aparente vezes o cosseno do ângulo

P = |S|.cosθ

E portanto, é factível verificar que ao dividirmos a potência média pela potência aparente, cujo a qual consegue transmitir informação tanto da média quanto da reativa, temos como resultado o cosθ = fator de potência. Dessa forma, determinamos que o fator de potência é na realidade uma proporção de quanto da potência está sendo eficiente para o sistema como um todo.

Impactos e desafios

Sabendo o que é o fator de potência e qual o seu significado, pode-se então discutir seus impactos na rede de distribuição, sendo uma delas já mencionadas que é a determinação da qualidade de consumo dos eletrodomésticos e maquinário. Para servir de exemplo, é preciso saber que o padrão nacional do Brasil é que o sistema opere com um fator de potência de 0,92 para cima, ou seja, com 92% de eficácia.

Um dos desafios que a modernidade e o avanço tecnológico apresenta é o aumento das cargas indutivas nas residências e outros centros de consumo de energia elétrica, já que a tendência é que mais instalações adquiram novos motores e cargas indutivas como as mencionadas acima.

A forma que esse ângulo impacta o sistema e pode danificar os equipamentos e os geradores é que esse ângulo entre as potências média e reativa é determinado pela defasagem entre a corrente e a tensão nas cargas, haja visto que em indutores há um atraso de corrente em relação à tensão. Se essa defasagem se mantiver e por aumentando com o tempo, ao retornar à unidade geradora fora de sincronia com a máquina rotativa no gerador, pode causar uma dessincronização da mesma e com isso o sistema elétrico inteiro da região pode se tornar instável e danificar as propriedades dos consumidores.

Correção do fator de potência

Com isso, a medida que é aplicada para que não haja essa defasagem atenuada entre tensão e corrente é a inserção de um banco de capacitores em paralelo com a unidade de distribuição da energia elétrica, seja na subestação ou em alguns transformadores. A maneira como esse banco de capacitores funciona é devido à impedância que o capacitor representa para uma fonte senoidal, sendo ela o número complexo puramente imaginário com fase -90º, em comparação com a impedância do indutor que representa uma impedância com ângulo 90º positivo.

Fonte: Alexander e Sadiku

Dessa forma, é possível notar que a potência complexa dessas duas cargas distintas terão potências reativas com sentidos contrários, e a lógica é que ao adicionar as duas em paralelo, ou seja, a tensão nas duas será a mesma, é que a medida Q total seja diminuída e dessa forma seja feito o controle do ângulo entre as potências.

Conclusão

Foi demonstrado como o fator de potência necessita de constante melhorias para acompanhar a modernização da sociedade e sua constante evolução de equipamentos residenciais e industriais, para que então toda a rede de distribuição opere sem que haja prejuízo para o consumidor e nem para a concessionária.

À partir dessa ideia de manter o fator de potência, ou proporção de eficiência de consumo de potência das cargas dentro de um patamar de qualidade para que o funcionamento se mantenha operante é que surge a medida de corrigir o fator de potência com um banco de capacitores para que haja uma diminuição na potência reativa e com isso, perdas e dissipação da energia em campo magnético.

Referências

NILSSON, James W; RIEDEL, Susan A. Circuitos Elétricos. 10ª Edição. Pearson, 2016.

FERNANDES, Sthefania. Correção do fator de potência. Embarcados, 26 de dezembro de 2022. Disponível em <https://embarcados.com.br/correcao-do-fator-de-potencia/>.

ELÉTRICA EM LIMITES. Como é feita a correção do fator de potência de uma instalação elétrica? (passo-a-passo). Youtube, 16 de abril de 2023. Disponível em <https://www.youtube.com/watch?v=eYloMiZRJ4E>.

Processo Seletivo 2024.2

O Capitulo Técnico exemplar do Conselho Brasil está de portas abertas. Participe do nosso processo seletivo e venha fazer parte do nosso grupo!

Pré-Requisitos

  1. Ser estudante de Engenharia Elétrica da UFBA;
  2. Ter cursado ou estar cursando a disciplina Análise de Circuitos I;
  3. Disponibilidade de 20h semanais.

Calendário

Inscrições até dia 13/10/2024;

Entrevistas: a partir do dia 14/10/2024.

Clique aqui para se inscrever!

OBSERVAÇÃO: O estudante que for técnico em eletrotécnica está isento do segundo requisito e pode participar do processo em qualquer momento da graduação.

Isolador tipo bucha

A bucha de isolamento elétrico é um componente essencial em sistemas elétricos de alta tensão, projetada para permitir a passagem de um condutor sem causar fuga de corrente elétrica. Ela desempenha a função de isolar eletricamente o condutor, suportar os esforços mecânicos e ao mesmo tempo permitir a continuidade da linha de energia com segurança.


Bucha de isolamento tipo porcelana

Fonte: <https://www.germerisoladores.com.br/produto/isolador-tipo-bucha-para-transformador-15kv-160a-t2/>

Função principal

A principal função da bucha de isolamento é evitar a passagem de corrente elétrica para o equipamento ou estrutura à qual está acoplada, mantendo a separação entre o condutor de alta tensão e a parte externa aterrada. Assim, a bucha garante a integridade do sistema elétrico e ajuda a prevenir curtos-circuitos e falhas que podem comprometer a operação dos equipamentos.

Buchas de isolamento são amplamente utilizadas em transformadores, disjuntores, seccionadores e outros equipamentos elétricos de alta tensão. Elas são projetadas para suportar condições extremas de operação, como altas temperaturas, variações climáticas e poluição, o que exige uma manutenção regular para garantir seu desempenho e segurança.

Estrutura e materiais

A estrutura de uma bucha de isolamento normalmente inclui três partes principais:

  1. Parte condutora: constituída pelo condutor de alta tensão que passa pela bucha.
  2. Material isolante: geralmente feito de porcelana, vidro ou materiais compósitos, sendo responsável pelo isolamento entre o condutor e o exterior.
  3. Parte externa: a bucha é normalmente equipada com aletas ou ranhuras para aumentar a distância de fuga e melhorar o desempenho contra intempéries.

Esquema interno de uma bucha de isolamento

Fonte: <https://www.savree.com/en/encyclopedia/oilfilled-porcelain-bushing>

Além disso, há diferentes tipos de buchas de acordo com a sua aplicação, como buchas a óleo, buchas secas e buchas capacitivas, cada uma projetada para atender a requisitos específicos de isolamento e operação.

Tipos de buchas de isolamento

Existem vários tipos de buchas de isolamento, cada uma projetada para atender diferentes necessidades de aplicação e condições de operação:

  1. Buchas a óleo:
    • São buchas preenchidas com óleo mineral ou outro fluido isolante. O óleo ajuda a dissipar o calor gerado pela corrente elétrica e também contribui para a função de isolamento. Esse tipo é comum em transformadores de potência e outros equipamentos imersos em óleo.
  2. Buchas secas:
    • Estas são usadas principalmente em instalações ao ar livre. Elas geralmente usam materiais compostos, como resina epóxi, como isolante. Por não ter óleo, buchas secas não são suscetíveis a vazamentos, logo, exigem menos manutenção, sendo ideais para ambientes onde o risco de contaminação do solo ou incêndio é uma preocupação.
  3. Buchas capacitivas:
    • Projetadas para melhorar o controle da distribuição de campo elétrico ao longo do comprimento da bucha. Elas incorporam camadas capacitivas no material isolante, que ajudam a distribuir de maneira mais uniforme o estresse elétrico, aumentando a confiabilidade em sistemas de alta tensão.

Manutenção e desafios

A manutenção de buchas de isolamento é fundamental para garantir a confiabilidade do sistema elétrico. Defeitos como rachaduras, perda de vedação ou contaminação da superfície podem levar a falhas de isolamento e, consequentemente, a descargas elétricas. Monitoramento regular por meio de ensaios de resistência de isolamento, fator de potência e inspeções visuais são práticas comuns para garantir a integridade do componente.

As buchas de isolamento estão sujeitas a várias formas de falha, que podem resultar em interrupções no fornecimento de energia e danos aos equipamentos. As falhas mais comuns incluem:

  1. Descargas parciais: Ocasionadas por falhas no isolamento, as descargas parciais são pequenas faíscas que ocorrem dentro da bucha, o que pode levar à degradação progressiva do material isolante.
  2. Rachaduras e fissuras: Rachaduras no isolante externo podem permitir a entrada de umidade e contaminantes, reduzindo a eficácia do isolamento e aumentando o risco de falha elétrica.
  3. Perda de fluido isolante: Em buchas a óleo, a perda de fluido devido a vazamentos compromete tanto a função de resfriamento quanto o isolamento, exigindo reparos imediatos.
  4. Contaminação externa: Em ambientes muito poluídos, partículas de poeira e outros contaminantes podem se acumular na superfície das buchas, reduzindo a resistência de isolamento e levando à formação de trilhas de condução elétrica que podem causar curtos-circuitos.

Importância na rede elétrica

As buchas de isolamento são componentes críticos porque qualquer falha nelas pode ter efeitos desagradáveis para a rede. Além de potencialmente danificar equipamentos de alto custo, como transformadores, a falha de uma bucha pode causar quedas de energia generalizadas, impactando o fornecimento de eletricidade para grandes áreas.

Assim, o desenvolvimento de materiais mais robustos e tecnologias de monitoramento avançado são focos de inovação no campo das buchas de isolamento, visando aumentar a segurança e confiabilidade dos sistemas elétricos de potência.

DA SILVA, Leonardo Nunes Alves . MONITORAMENTO E DIAGNÓSTICO DE BUCHAS DE ALTA TENSÃO. Rio de Janeiro: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO, 2007.

MONITORAMENTO E DIAGNÓSTICO DE BUCHAS DE ALTA TENSÃO. Bushing (electrical). Disponível em: https://en.wikipedia.org/wiki/Bushing_(electrical). Acesso em: 10 set. 2024.

Oil-Filled Porcelain Bushing. Bushing (electrical). Disponível em: https://www.savree.com/en/encyclopedia/oilfilled-porcelain-bushing. Acesso em: 10 set. 2024.

Seguidores solares

Entre todas as fontes de energia disponíveis, a energia solar é a mais abundante e pode ser explorada de forma direta e indireta. O Brasil recebe níveis médios de radiação solar superiores aos observados na maioria dos países europeus, com baixa variabilidade sazonal, devido à grande parte do país estar localizada na zona tropical. Nesse contexto, a aplicação de técnicas como os seguidores solares (solar trackers), automatizam os sistemas e os tornam mais eficientes.

Seguidor Solar
Fonte: <https://upload.wikimedia.org/wikipedia/commons/9/92/Suntactics_solar_tracker.jpg>

A utilização de seguidores solares pode aumentar significativamente a eficiência dos sistemas fotovoltaicos, pois eles podem captar mais luz solar ao longo do dia em comparação com sistemas fixos. Isso é especialmente benéfico em regiões com alta variabilidade na posição do sol ao longo do ano.

Além disso, os seguidores solares podem ser equipados com sensores e sistemas de controle automatizados que ajustam continuamente a posição dos painéis, garantindo a máxima exposição solar e, consequentemente, maior geração de energia.

Para se projetar a instalação do sistema fotovoltaico é necessário saber a posição do Sol no céu de acordo com um observador na Terra. O sistema de coordena das astronômica horizontal ou alta-azimutal é um dos sistemas mais simples e o mais conveniente para aplicações fotovoltaicas, ele utiliza as coordenadas da altura (h) e azimute (A) para localizar um astro na esfera celeste.

A esfera celeste é uma superfície esférica imaginaria que envolve a terra e onde fica os corpos celestes. Os planos e pontos na esfera celestes ajudam na determinação da posição dos astros no céu. O horizonte é o plano tangente à terra e onde fica o observador, o zênite é o ponto perpendicular ao horizonte.

Movimento aparente do Sol

O Sol, durante o dia claro, para um observador na Terra, aparenta estar se movimentando no céu de modo de que, ao nascer até se pôr, desloca-se de um lado ao outro do horizonte. Esse movimento é chamado de Movimento Diurno Aparente do Sol.

Outro fato comum, é considerar o nascer do Sol ao lado leste e o pôr do Sol ao lado oeste. Porém, isso não é o que realmente ocorre e é facilmente comprovável com apenas a observação, a partir do mesmo ponto, do nascer e do sol durante o ano. A posição do nascer do sol varia ao longo do ano e chega ao seu limite nos solstícios.

O eixo de rotação terrestre está sempre inclinado em um ângulo de 23,45° em relação ao eixo da eclíptica. A declinação solar é distância angular dos raios solares do norte ou sul do equador, com a orientação norte definida como positiva.

A inclinação do eixo terrestre, associado ao movimento da Terra, implica na mudança dos pontos do horizonte em que o Sol nasce ao longo do ano. Esse movimento, chamado de Movimento Anual Aparente do Sol, faz com que o Sol aparente estar a cada dia a uma região mais a Leste numa região
estelar.

Rastreamento no eixo vertical e horizontal

Os sistemas de rastreamento podem ser classificados pelo modo de seu movimento, que pode ocorrer em um eixo ou em dois eixos. Os seguidores de eixo único movem-se ao longo de um único eixo, geralmente de leste a oeste, enquanto os de dois eixos podem ajustar-se tanto horizontal quanto verticalmente, permitindo um alinhamento mais preciso com o sol.

No caso do modelo de um eixo, o movimento pode ser das seguintes formas: paralelo ao eixo da Terra, Norte-Sul ou Leste-Oeste.

O mecanismo de rastreamento em dois eixos pode ajustar-se tanto horizontal quanto verticalmente. Com isso, ele possui movimentação azimutal (eixo vertical) e de inclinação (eixo horizontal), permitindo um alinhamento mais preciso com o sol, o que proporciona um grande rendimento.

Referências

BEDAQUE, P.; BRETONES, P. S. Variação da posição de nascimento do Sol em função da latitude. Revista Brasileira de Ensino de Física [online]. 2016, v. 38, n. 3, e3307.

BOCKZO, R. Conceitos de Astronomia. Edgard Blücher Ltda, São Paulo, 1984, 429 p.

KALOGIROU, S. A. 2014. Solar energy engineering: processes and systems. 2. ed, Academic Press, Elsevier, EUA, 2014.

MECENEIRO, G. D. Desenvolvimento de um sistema para rastreamento solar. Dissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Tecnologia, Limeira, SP, 2018. 80 p.

PAIVA, E. C. Desenvolvimento de um rastreador solar microcontrolado para um coletor solar concentrador. Tese de Doutorado, Universidade Federal de Viçosa, Minas Gerais, 2009.

SMETS, A. H. M. et al. Solar Energy: The Physics and Engineering of Photovoltaic
Conversion, Technologies and Systems. Uit Cambridge Ltd. 488 p, 2016.

Princípio básico de funcionamento de um transformador

Os transformadores desempenham um papel fundamental no sistema elétrico de potência, atuando como protagonistas essenciais. Eles são responsáveis por ajustar os níveis de tensão da energia elétrica produzida nas usinas para que possa ser transmitida de maneira eficiente e segura através das linhas de transmissão. Além disso, os transformadores também desempenham um papel crucial na distribuição de energia elétrica. Eles reduzem a tensão para níveis que podem ser usados com segurança em residências e empresas. Isso garante que a energia elétrica chegue aos consumidores finais de maneira segura e eficiente.

Distribuição de energia elétrica
Fonte: brgfx / Freepik

Descobertas que contribuíram para o desenvolvimento do transformador

Faraday, em 1831, percebeu que é possível gerar tensão elétrica através do movimento relativo entre um condutor e um campo magnético, sem que haja a necessidade de contato físico entre os elementos. A Lei de Lenz, posteriormente formulada, estabeleceu que tanto o movimento resultante de uma força mecânica, quanto o fluxo magnético concatenado, podem induzir uma tensão elétrica.

Essa tensão, quando em um circuito fechado, produz uma corrente cujo campo magnético tende a se opor à variação do fluxo magnético que a gerou. Além disso, a tensão induzida será diretamente proporcional ao número de espiras de fio da bobina que possuem o mesmo fluxo passando sobre elas e a taxa de variação do fluxo em relação ao tempo. E o seu sinal será negativo devido a expressão da lei de Lenz. Na forma de equação, temos

    \[e_{ind} = -N\frac{d\phi}{dt}\]

em que
e_{ind} = tensão induzida na bobina
N = número de espiras de fio da bobina
\phi = fluxo que passa através da bobina

Princípio de funcionamento de transformador ideal

O princípio de funcionamento de um transformador baseia-se na aplicação desses conceitos citados anteriormente. Através de um campo magnético variável no tempo, induz-se uma tensão em uma bobina quando esse campo a atravessa. E em um transformador típico, existem duas bobinas, a primária e a secundária. Quando uma corrente alternada é aplicada à bobina primária, ela cria um campo magnético variável que induz uma tensão nos terminais da bobina secundária. Com isso, o transformador é capaz de transferir a energia, por meio de indução eletromagnética, do primário para o secundário.

Desenho de um transformador ideal
Fonte: Autoria própria

No secundário do transformador, a frequência permanece a mesma, porém, a corrente e a tensão mudam, sendo a magnitude de ambas dependentes da relação entre número de espiras do primário e do secundário.

Então, considerando um transformador ideal, que não possui perdas em seus enrolamentos de entrada e saída. A relação entre a tensão vp(t) aplicada no lado do enrolamento primário do transformador e a tensão vs(t) produzida no lado do secundário é

    \[\frac{v_p(t)}{v_s(t)} = \frac{N_S}{N_p} = a\]

Onde a é definido a relação de espiras ou relação de transformação do transformador:

    \[a = \frac{N_p}{N_s}\]

A relação entre a corrente ip(t) que entra no lado primário do transformador e a corrente is(t) que sai do lado secundário do transformador é

    \[N_pi_p(t) = N_si_s(t)\]

ou

    \[\frac{i_p(t)}{i_s(t)}= \frac{1}{a}\]

Existem dois tipos de transformadores: os abaixadores e os elevadores de tensão. O transformador abaixador de tensão é aquele em que a tensão no secundário é menor do que a tensão no primário. O transformador elevador de tensão é aquele em que a tensão no secundário é maior do que a tensão no primário. Os transformadores elevadores são normalmente usados para elevar os níveis de tensão produzidos nas usinas para as linhas de transmissão, enquanto os abaixadores são bastante utilizados para reduzir os níveis de tensão para o consumo.

A potência do transformador ideal

A potência ativa de entrada Pentrada fornecida ao transformador pelo circuito primário é dada pela equação

    \[P_{entrada} = V_pI_pcos\theta_p\]

\theta_p = o ângulo entre a tensão primária e a corrente primária

Por outro lado, a potência ativa Psaída fornecida pelo circuito secundário do transformador à sua carga é dada pela equação

    \[P_{saída}  =  V_{s}I_{s}cos\theta_{s}\]

\theta_{s} = o ângulo entre a tensão secundária e a corrente secundária

Como, em transformador ideal, o fator de potência não muda do primário para o secundário, o ângulo entre a tensão e a corrente também não se altera, então

    \[P_{saída} = V_{s}I_{s}cos\theta_{s} = P_{entrada}\]

Logo, a potência de um transformador ideal é igual tanto na saída quanto na entrada.

Conclusão

Em suma, os transformadores desempenham um papel crucial no sistema elétrico de potência ao ajustar os níveis de tensão. Além disso, eles são essenciais na distribuição de energia, reduzindo a tensão para uso seguro em residências e empresas. Os transformadores podem ser abaixadores ou elevadores de tensão, sendo os primeiros usados para consumo e os segundos para transmissão de energia das usinas para as linhas de transmissão.
Neste artigo, foi feito um breve resumo do princípio de funcionamento de um transformador, com foco nos transformadores ideais. Para aprofundar ainda mais o assunto, recomendo a leitura dos livros listados nas referências e também da nossa apostila sobre transformadores. No futuro, mais conceitos serão abordados através de outros artigos.

Referências

ALEXANDER, C. K.; SADIKU, M. Fundamentos de Circuitos Elétricos. [s.l: s.n.].

CHAPMAN, S. J. Fundamentos de Máquinas Elétricas – 5ed. [s.l.] AMGH Editora, 2013.

KOSOW, I. L. Electric Machinery and Transformers. [s.l.] Pearson Educación, 1991.

MENEZES, M.; VERGNE, M. APOSTILA DE TRANSFORMADORES SISTEMAS DE POTÊNCIA. [s.l.] Grupo de Sistemas Elétricos de Potência Integrados, [s.d.].